優化PCB設計的可編程電源管理方案
PCB電源管理一般來說是關于給PCB供電所涉及到的方方面面的。一些通常涉及的問題有:
本文引用地址://tjguifa.cn/article/83482.htm1. 選擇各種DC-DC 轉換器為PCB供電;
2. 電源啟閉排序/跟蹤;
3. 電壓監測;
4. 上述全部。
在本文中,電源管理被簡單定義為:對PCB上的全部電源實施管理(包括:DC-DC轉換器、LDO等)。電源管理包括如下功能:管理PCB上DC-DC控制器。例如,熱插拔、軟啟動、排序、追蹤、容限和規整;生成全部相關的電源狀態和控制邏輯信號。例如,復位信號生成、電源故障指示(監控)和電壓管理。圖1演示了一個采用CPU或微處理器的PCB上的典型電源管理功能;熱插拔/軟啟動控制功能用于限制浪涌電流以減小電源的啟動負載。對插入有源(live)基板的PCB來說,這是個重要功能;電源排序和跟蹤功能用于在滿足PCB上的全部器件對上電順序要求的前提下,控制如何開/關多個電源。對所有電壓進行故障(過/欠壓)監測以向處理器就即將發生的電源故障進行預警。該功能也被稱為“監管功能”。

圖1:PCB上的典型電源管理功能。
在處理器上電時,復位生成功能為處理器提供可靠的啟動條件。有些處理器要求在處理器全部工作電源都穩定后,復位信號仍保留一段時間。這也被稱為復位脈沖展延。復位發生器的功能是當電源發生故障時,使處理器保持在復位模式以防止板上閃存發生不希望的錯誤。
傳統電源管理方案的局限性
傳統上,PCB上的每一電源管理功能是分別由單獨的功能IC實現的。對不同的電壓組合,這些IC有不同型號。這樣,就有來自不同廠家的數百個單一功能IC型號以滿足不同的電源管理需要。例如,為選擇一款復位發生器IC型號,必須提供以下信息:
1. 該復位發生器IC需監測的電壓路數;
2. 電壓的組合(3.3、2.5、1.2或 3.3、2.5、1.8等);
3. 故障檢測電壓的%(3.3V-5%、3.3V-10%等);
4. 精度(3%、2%、1.5%等);
5. 借助外接電容控制的復位脈沖展延功能;
6. 手動復位輸入。
為處理這些參數所有可能的變化,單就一個復位發生器IC來說,僅一家廠商就可有幾百個型號。另外,若在設計過程中,工程師需監測另一個電壓(很可能),則必須選另一個不同型號的產品。類似,許多單一功能IC即使僅就同一個功能、根據不同參數也會有許多型號,如熱插拔控制器、電源排序器和電壓監測/檢測器等功能IC。一個由多塊PCB構成的系統的每塊PCB都需要不同組的這些單功能IC,從而也增加的材料成本。
PCB設計的復雜性不斷增加
若單功能電源管理IC的使用曾經還可管理的話,那也都是往事舊話了。許多PCB現一般使用若干多電壓器件,每個器件有不同的上電順序。工藝節點越精微的器件需要的電壓越低,但電流加大。設計師常常需要利用每個多電壓電源IC的一個負載點。這樣,PCB上使用的電源數將增加。隨著電源電壓回路的增加以及需多個排序管理,電源管理變得更復雜。
隨著PCB設計變得日益復雜,傳統的電源管理方案變得更難以招架。目前,利用傳統單功能IC實現電源管理的設計師或不得不放棄監測某些電壓或針對每一電源管理功能選用多個單功能器件。以下兩種方法都不可取。
1.加大了PCB面積降低了可靠性
單功能IC數的增加以及隨之而來的其間的互連不僅增加了PCB面積,從統計學的角度看,還降低了PCB的可靠性。例如,有可能增加組裝出錯概率,從而導致不可預見(肯定是不好)的結果。
2.第二供貨渠道以及設計妥協
若單功能器件是從不同供應商處選購的,則增加了因哪怕只有其中一個器件不能按時到位而導致的生產延誤風險。這又反過來導致對第二供貨渠道的需求。但,第二渠道會降低設計工程師的器件可用性,從而因這些拿不到手的器件迫使設計師不得已犧牲PCB的故障監控覆蓋范圍。
組裝和測試費用與系統中所用的器件數成正比。而器件單位成本與購買批量成反比。因在一個給定系統中需要許多器件,而構造系統所需的每種器件都變少,所以增加了總體系統成本。例如,假設一個系統有10塊PCB,每年將制造1,000個這樣的系統。若每塊PCB采用單功能IC實現電源管理,則為了完成設計大概需要10種不同的單功能IC。則這些單功能IC每年的需求量是1,000塊。批量1,000時的單價當然高于批量10,000時的單價,所以,與全部PCB都采用同一種單功能電源管理IC的方案比,前一種電源管理方案的成本肯定高。
采用多個單功能IC器件實現的傳統電源管理方案已成1980年代的陳年舊事,那時,數字設計師利用TTL門來實現邏輯功能。隨著PCB復雜性的增加,設計師不得不在是選用固定功能的ASIC還是增加所用的TTL門的數量這兩個方案間選擇。不奇怪,系統設計所用的TTL器件數在急劇增加。
可編程邏輯器件(PLD)的出現使設計師可在給定的PCB單位面積內實現更多功能且還縮短了產品上市時間。因降低了系統所用的器件數,所以還降低了總體系統成本。因可在多個設計中使用同一個PLD,所以減少了系統所用器件數。公司能在不犧牲每塊PCB所需功能的前提下,對少量PLD器件進行標準化處理。
管理少量的PLD比管理很多TTL門要容易地多。相同的PLD可被用于多個PCB設計,從而減少甚至不再需要第二家供貨渠道。設計師可在設計投板前,用軟件仿真設計,從而增加了一次成功的機會。目前,利用單功能電源管理IC就像過去采用TTL門一樣老套。設計當今復雜的PCB需要“電源管理PLD”。的確,采用這種器件現應是PCB設計的一種要約。


評論